Nanocomposites of tantalum-based pyrochlore and indium hydroxide showing high and stable photocatalytic activities for overall water splitting and carbon dioxide reduction.

نویسندگان

  • Meng-Chun Hsieh
  • Guan-Chang Wu
  • Wei-Guang Liu
  • William A Goddard
  • Chia-Min Yang
چکیده

Nanocomposites of tantalum-based pyrochlore nanoparticles and indium hydroxide were prepared by a hydrothermal process for UV-driven photocatalytic reactions including overall water splitting, hydrogen production from photoreforming of methanol, and CO2 reduction with water to produce CO. The best catalyst was more than 20 times more active than sodium tantalate in overall water splitting and 3 times more active than Degussa P25 TiO2 in CO2 reduction. Moreover, the catalyst was very stable while generating stoichiometric products of H2 (or CO) and O2 throughout long-term photocatalytic reactions. After the removal of In(OH)3, the pyrochlore nanoparticles remained highly active for H2 production from pure water and aqueous methanol solution. Both experimental studies and density functional theory calculations suggest that the pyrochlore nanoparticles catalyzed the water reduction to produce H2, whereas In(OH)3 was the major active component for water oxidation to produce O2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sol-Gel Fabrication and Photocatalytic Properties of Indium Oxide-CNT Composite

Carbon nanotube-In2O3 nanocomposites were synthesized by sol-gel method with the help of ultrasonic radiation. The samples were characterized by X-ray diffractometer, transmission electron microscopy and energy dispersive spectrometer. The UV absorbing properties were detected by the UV spectrophotometer. Photo degradation of methylene blue in aqueous solution was investigated by using CNT/In2O...

متن کامل

Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting

Graphitic carbon nitride based polymers, being metal-free, accessible, environmentally benign and sustainable, have been widely investigated for artificial photosynthesis in recent years for the photocatalytic splitting of water to produce hydrogen fuel. However, the photocatalytic stoichiometric splitting of pure water into H2 and O2 with a molecular ratio of 2 : 1 is far from easy, and is usu...

متن کامل

Photocatalytic Degradation of Acid Yellow 36 Using Titanium Dioxide Nanocomposites Doped by Zirconium

Introduction: In this research, TiO2-Zr nano-photocatalyst was firstly developed with the aim of improving the photocatalytic activity of titanium dioxide via sol-gel method. The recovery of catalysts in acidic, alkaline and thermal conditions was also studied. Method: This research was done on a laboratory scale. The structures and properties were recognized with (BET), (FT-IR), (FE-SEM), and...

متن کامل

2D/2D Graphitic Carbon Nitride (g-C3N4) Heterojunction Nanocomposites for Photocatalysis: Why Does Face-to-Face Interface Matter?

In recent years, two-dimensional (2D) graphitic carbon nitride (g-C3N4) has elicited interdisciplinary research fascination among the scientific communities due to its attractive properties such as appropriate band structures, visible-light absorption, and high chemical and thermal stability. At present, research aiming at engineering 2D g-C3N4 photocatalysts at an atomic and molecular level in...

متن کامل

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

In the pursuit towards the use of sunlight as a sustainable source for energy generation and environmental remediation, photocatalytic water splitting and photocatalytic pollutant degradation have recently gained significant importance. Research in this field is aimed at solving the global energy crisis and environmental issues in an ecologically-friendly way by using two of the most abundant n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Angewandte Chemie

دوره 53 51  شماره 

صفحات  -

تاریخ انتشار 2014